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Chapter 1

Introduction

The end of the Second World War was the dawn of a new age for astronomy and astrophysics. With
the advent of new techniques and technologies, there have been dramatic advances in astronomy and
the emergence of newer fields. One of the most important newer fields, was high energy astrophysics.

High energy astrophysics, as the name suggests, deals with the physics of high energy processes in
astronomical environments. It exposes us to the tumultuous environments of stars, the extreme
nature of black holes, the highly energetic magnetic fields of neutron stars, to name a few, with
more mysteries yet to be understood.

1.1 History

The launch-pad for this field was the opening up of the entire electromagnetic spectrum for astro-
nomical observations. Until the World War, astronomy was synonymous with optical astronomy,
i.e. observations carried out with visible light. With advancements in technology, the other regions
of the electromagnetic spectrum were unlocked for observation.

Infrared Waveband
Interstellar extinction is the absorption and scattering of radiation by dust and gas between the
astronomical source and the observer. While the visible waveband is susceptible to extinction, the
dust is transparent to the infrared waveband. Images of the sky in the near-infrared waveband have
reduced extinction due to interstellar dust and have revealed the structure of our galaxy. Surveys
conducted by 2MASS and COBE have revealed the central regions of our galaxy, the important
star formation regions, which were enshrouded in dust. These observations provided convincing
evidence for the presence of a supermassive black hole, called Sagittarius A*, at the Galactic Core.

Radio Waveband
Radio emissions have been discovered from a wide range of different astronomical objects. The pro-
cesses pertaining to these radio emissions were many, but the most common one was the synchroton
radiation of ultra-relativistic electrons in magnetic fields. These radio observations have provided
us information about the hottest plasmas in the universe. Observation of radio sources have led
to the discovery of quasars (quasi-stellar radio sources) and a kind of neutron star known as radio
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Figure 1.1: Galactic Core in infrared as observed by NASA’s Spitzer Space Telescope.

pulsars, the first definitive proof of the existence of these stars.

X-Ray Waveband
With rockets lifting payload detectors above the atmosphere, X-Ray astronomy has uncovered a
number of stellar X-ray sources, discovering pulsating sources associated with neutron stars, as well
as X-ray emission due to accretion of matter by black holes in binary star systems. It has also led
to the identification of clusters of galaxies, whose nuclei house intense, and often variable, X-ray
sources.

γ-Ray Waveband
γ-Rays are highly energetic, with energies greater than 100keV. Very high energy γ-rays can ini-
tiate photon-electron electromagnetic cascades in the upper atmosphere, and the ultra-relativistic
particles produced can generate Cherenkov radiation which can be observed from the ground level.
Gamma ray bursts originating from violent events involving stellar-mass objects, and the subse-
quent afterglow observed in the rest of the electromagnetic spectrum, are of significant cosmological
importance.

Cosmic Rays
The discovery of cosmic rays hinted at another facet to the Universe apart from just stars and
interstellar gas. Cosmic radiation consisted of high energy particles of chemical composition similar
to that of the sun, and the ionisation effect at the top of the atmosphere by very high energy cosmic
rays, led to extensive air showers of products of this ionisation, thus providing a means of detection.
Cosmic rays had profound implications to particle physics, as the detection of these air showers led
to the discovery muons, kaons and pions, verifying Yukawa’s theoretical predictions.
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1.2 Non-Electromagnetic Astronomy

Neutrino Astrophysics
The discovery of neutrinos originating from the Sun as a part of the solar neutrino experiment
matched predictions by one of the best solar models of the time. However, the detected neutrinos
were only a fraction of what was predicted by the models, leading to what was termed as the solar
neutrino paradox. This deficit was later accounted for by the discovery that neutrinos have finite
rest masses. Neutrinos have also been detected from supernovae leading to the formation of neutron
stars, thus providing insights into the physical processes involved.

Gravitational Waves
Gravitational waves are predicted to exist by Einstein’s Theory of Relativity, however they are
expected to be weak due to the weak nature of the gravitational force as compared to the other
fundamental forces. The LIGO project (Laser Interferometer Gravitational Wave Observatory) has
detected binary black hole mergers as well as neutron star mergers, in accordance with theory, and
have provided information about the nature (mass, spin etc.) of the merging bodies involved.
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Chapter 2

Stellar Astrophysics

Stars are the most widely recognized astronomical objects, with over a 100 billion stars residing in
our Milky Way alone, each having a variety of properties and behaviours. The study of stars is key
to astronomy, for it helps us to uncover a wide range of physical processes key to their evolution.

2.1 Origin

When non-uniformity develops in massive interstellar gas clouds, gravitational instability leads to
these “pockets” of higher densities accumulating more matter from the cloud. Large-scale gravita-
tional instability developed in the central regions of this gas cloud can trigger gravitational collapse.
The collapsing gas releases its gravitational potential energy as heat, which results in the formation
of a superhot, rotating ball of gas known as a protostar. The protostar continues to accrete matter
from the surrounding cloud, until core temperature is high enough to initiate nuclear fusion of hy-
drogen, at which point it is called a star. Often, star formation is widespread, in “stellar nurseries”
- regions of massive molecular clouds.

Figure 2.1: Star formation in the stellar nursery NGC 346 observed by NASA’s Hubble Telescope.
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2.2 Hertzsprung-Russel Diagram

The Hertzsprung-Russel Diagram (HR Diagram), also known as the color-magnitude diagram, serves
as an important tool to study stellar evolution. E. Hertzsprung and H.N. Russel independently
noticed a correlation between the spectral type and intrinsic luminosities of stars in the scatter
plot. By relating two of the fundamental physical parameters of stars, we can identify a star’s
evolutionary stage just from it’s position on the diagram. From Figure 2.2, we can identify a few
key patterns:

• A vast majority of the stars, including our Sun, lie along a diagonal, narrow and long band.
This band of stars is known as the Main sequence.

• Lying above the main sequence are the giants, bright giants and super giants. These are stars
that belong to the same spectral class but have higher luminosities and are hence, much bigger
than main sequence stars.

• Lying below the main sequence, on the lower left, are the white dwarfs. These faint stars have
high temperatures, implying that they are much smaller than main sequence stars.

• There also exists a region between the giant branch and the main sequence that is almost
devoid of stars, known as the Hertzsprung Gap.

Figure 2.2: A HR Diagram of 22,000 stars plotted from the Hipparcos Catalogue.
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2.3 Equations of Stellar Structure

We shall now try to describe the interior of a star. Under the assumption that the evolution of the
star is slow, i.e. the star is quasi-static, and that the star is spherically symmetric and homogeneous,
devoid of any rotation, we can come up with four differential equations of stellar structure, which,
when put together with an equation of state for the of the material in the star, can provide a
description of the nature of the star. The four equations are: (i) equation of hydrostatic support
(2.3), (ii) law of conservation of mass (2.5), (iii) equation of energy generation (2.12), and (iv)
equation of radiative transport (2.17).

2.3.1 Equation of Hydrostatic Support

Consider a star of mass MT and radius R. Taking M(r) to be the mass of the star contained within
a radius r, and ρ(r) to be the density of the material in the star, consider the forces on a cuboid at
a radius r, of area dA and thickness dr

Fgr =
GM(r)m

r2
=
GM(r)ρ(r) dAdr

r2
(2.1)

Fp = dA[p(r)− p(r + dr)] = −dAdr dp
dr

(2.2)

For the star to remain in equilibrium, we balance the two forces, and arrive at the equation of
hydrostatic support :

dp

dr
= −GM(r)ρ(r)

r2
(2.3)

2.3.2 Equation of Mass Conservation

The mass contained in a spherical shell between the radii r and r + dr is given by

M(r + dr)−M(r) = dM = 4πr2ρ(r) dr (2.4)

Which, upon rearranging, gives us the equation of mass conservation

dM

dr
= 4πr2ρ(r) (2.5)

Using the two equations that we have derived, we can perform some interesting calculations. Di-
viding equations (2.3) and (2.5), we get

dp

dM
= −GM

4πr4
(2.6)

Now, integrating this from the centre to the surface of the star

−
∫ MT

0

dp

dM
dM = pcentre − psurface =

∫ MT

0

GM

4πr4
dM
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Plugging in values for our Sun, taking psurface = 0 and underestimating the integral by taking
r = R�, we get

psurface >
GM�

2

8πR�
4 = 4.5× 108 atmospheres

This rough calculation gives us the notion of how high the pressure at the centre of the Sun is.

2.3.3 The Virial Theorem: A Detour

From the two equations of stellar structure that we have derived so far, we can derive the virial
theorem for stars, which is one of the most important equations for understanding the structure
and evolution of a star.

Reorganizing equation (2.6),

4πr3 dp = 3V dp = −GM
r

dM (2.7)

where V denotes volume of the star. Integrating the expression from the centre to the surface of
the star, and performing integration-by-parts,

3

∫ psurface

pcentre

p dV + Ω = 0

Here Ω represents the gravitational potential energy of the star, and is a negative quantity. Finally,
using dM = ρ dV , we arrive at the virial theorem,

3

∫ MT

0

p

ρ
dM + Ω = 0 (2.8)

Using the relation between the internal energy per unit volume and pressure of an ideal gas of
adiabatic exponent γ,

u =
p

γ − 1

we can arrive at a more useful form of the virial theorem

3(γ − 1)U + Ω = 0 (2.9)

where U is the total internal energy of the star. For monoatomic gases (which are the primary
components of a star), γ = 5/3, which gives us

2U + Ω = 0 (2.10)

Equation (2.10) proves to be a resolution to the thermal paradox for stars, which states that as
stars radiate energy, they heat up. As stars lose energy, the total energy E = U +Ω = −U becomes
more negative, and hence, the internal energy increases leading to a rise in temperature.

We can also estimate the Kelvin-Helmholtz or thermal-time scale for stars, which is the time it
would take for a star to radiate away all it’s internal thermal energy. For the Sun:

tKH =
U

L�
≈ GM�

2

2R�L�
= 1.5× 107 years
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where L� is the luminosity of the Sun. From the knowledge that the age of the Earth is 4.5 billion
years, the estimate of 1.5 million years for the Sun’s entire lifespan is off. This is because we have
not considered the nuclear energy source in the Sun’s core.

The virial theorem also ensures the stability of nuclear burning. If the equilibrium burning rate
of nuclear fuel in the core of the star ε changes by an amount ∆ε, the increased production of
energy causes the star to expand, making Ω less negative, causing U to decrease, thereby cooling
the core. Since energy production is temperature dependent, this reduces the burning rate back
to equilibrium. Thus, the virial theorem ensures a strong negative feedback loop in non-degenerate
stars, making nuclear burning stable. Note that this is not the case when the matter in the star is
degenerate, as pressure is now independent of temperature, and the star does not expand due to the
perturbation. Therefore the temperature of the core further increases, causing a positive feedback
loop, which can lead to thermonuclear runaway, something we shall touch upon while discussing
mass loss in stars.

2.3.4 Equation of Energy Generation

The contribution to the total energy outflow from a star, by a spherical shell of radius r and
thickness dr is

dL = 4πr2ρ ε dr (2.11)

where ε is the rate of energy generated by nuclear processes per unit mass of stellar matter, and is
dependent on local temperature, density and chemical composition. Rearranging, we arrive at the
equation of energy generation:

dL

dr
= 4πr2ρ ε (2.12)

The derived form of the equation represents the convenient form of thermal equilibrium condition
in stellar interior during the phases in which the star spends a sufficiently long time. There are
critical phases of stellar life, however, when other sources of energy, like gravitational and thermal,
play an important role in supplementing the role of nuclear energy. During these phases, the star
adjusts its structure by expanding or contracting in order to achieve stability again. During such
phases, the equation takes the form

dL

dr
= 4πr2ρ

(
ε− T dS

dt

)
(2.13)

where S is the entropy of the star. Here, the latter term in the brackets represents the gravitational
energy generation rate, which describes the energy change due to contraction or expansion of the
star. During the non-critical (constant) phase of stellar life, the contribution from this term is
negligible.

In main sequence stars, the main source of energy is the nuclear reaction converting hydrogen to
helium. This conversion can take place through two processes:

10



Figure 2.3: Temperature dependence of nuclear energy generation for P-P chain and CNO cycle.

• The proton-proton (p-p) chain reaction is the dominant form of energy generation for tem-
peratures lower than 1.7 × 107 K. The energy generation rate can be described by ε ∝ T 4.
Principal reactions involved are:

p + p −−→ 2
1H + e+ + νe

2
1H + p −−→ 3

2He + γ

3
2He + 3

2He −−→ 4
2He + 2 p

The detection of the electron neutrinos (νe) produced in the second reaction is a key test of
this theory.

• The CNO cycle is the dominant energy generation pathway for temperatures greater than
1.7 × 107 K. It involves the successive addition of protons to nuclei and the use of Carbon
as a catalyst. The energy generation rate can be described by ε ∝ T 17. Reactions involved are:

12
6C + p −−→ 13

7N + γ

13
7N −−→

13
6C + e+ + νe

13
6C + p −−→ 14

7N + γ

14
7N + p −−→ 15

8O + γ

15
8O −−→

15
7N + e+ + νe

15
7N + p −−→ 4

2He + 12
6C
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2.3.5 Equation of Radiative Transport

Energy transport through a star can occur through any of three ways: conduction, convection and
radiation. Despite the fact that radiation undergoes heavy scattering in the interior of stars, it is
still much more important than thermal conduction. This is because the mean free path of photons,
although small, is much larger than that of particles like electrons. This results in photons, which
undergo a random walk process, carrying most of the energy flux. This, however, is not the case in
stars with degenerate matter, where conduction by electrons is very efficient. Convection, on the
other hand, take over energy transport only when the temperature gradient exceeds the adiabatic
gradient (a condition known as super-adiabatic).

We shall focus primarily on radiative transport in stars. The standard form of the heat diffusion
equation is

F = −λdT
dr

(2.14)

where F is the power per unit area parallel to temperature gradient. Therefore luminosity L =
4πr2F . Also, the change in radiation pressure

dp = −κρF
c

dr (2.15)

where κ is the opacity of stellar material and represents the fraction of the flux absorbed or scat-
tered per unit length per unit mass. We can also show, from Stefan-Boltzmann Law, that radiation

pressure is given by p =
1

3
aT 4, where a =

4σ

c
. So,

dp

dT
=
dp

dr

dr

dT
=

4

3
aT 3

Substituting appropriate expressions for the derivatives, we get

F = −4

3

acT 3

κρ

dT

dr
(2.16)

which upon expressing in terms of luminosity gives us the equation of radiative transport :

dT

dr
=

3κρ

16πacr2 T 3
L (2.17)

The following table lists the physical processes behind opacity in different temperature ranges:

Temperature Range Physical Process

Low 104 − 104.5 Atomic and molecular absorption
Medium 104.5 − 107 Bound-free and free-free absorption

High > 107 Electron scattering
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2.4 Stellar Structure

Models of quasi-static stars can be created by pairing the equations of stellar structure with the
equation of state of the star. Some basic insights into the stellar interior can be drawn by adopting
a homologous stellar model, under the assumptions that the composition of the star is homogeneous
and the properties of energy transport and generation are universal within the star. Under these
assumptions, the four equations, paired with the equation of state corresponding to an ideal gas,
can be used to obtain power-law relations describing the dependence of the properties of stars.
However, we must understand that more accurate models arise from taking into consideration non
idealities of the stellar structure, such as: non-homogeneity, effects of convective regions in the star
and the detailed physics of nuclear energy generation and radiation.

Schönberg and Chandrashekhar discovered in 1942 that stellar models with an inert core containing
more than 10% to 15% of the mass of the star are unstable. In such cases, the hydrogen-burning
shell surrounding the inert helium core experiences a very high pressure, causing the inner regions
to collapse. The collapse continues until helium fusion begins in the core.

We can also arrive at a better estimate at the lifetime of a star. The fraction of rest mass converted
to energy due to either the p-p chain or CNO cycle is 0.007. Also, stars move off the main-sequence
of the HR diagram when the Schönberg-Chandrashekhar limit is reached (mass of core is 10% of
mass of star). Hence, the main sequence lifetime of a star is given by:

TMS =
E

L
=

0.007(0.1×M)c2

L

For the Sun, this comes out to be 1010 years. From the mass-luminosity relation L ∝ Mx where
x ∼ 3.5 for stars with M ∼M�, the main-sequence lifetime for a star is:

T (M) = 1010
(
M

M�

)1−x

years (2.18)

2.5 Stellar Evolution

2.5.1 Hayashi Track

When a protostar is forming by accumulation of matter from the surrounding enevelope of inter-
stellar dust and gas, it is not yet on the main-sequence, and is known as a pre-main-sequence star
(PMS). After accumulating most of its mass from the molecular cloud, it blows off the remaining
envelope. At this point, fusion has not begun in the core, and hence, the main source of energy is
gravitational contraction as opposed to hydrogen burning. At this point of contraction, the PMS
is said to have “taken birth” on the HR diagram and proceeds along the Hayashi Track.

Hayashi showed that before the protostar can achieve hydrostatic equilibrium, the surface tem-
perature must be sufficiently high. Also, the high opacity of the interior of the star prevents the
smooth transfer of radiation, which results in large scale convection currents throughout the star
carrying energy to the surface. The Hayashi track thus describes a fully convective star, or rather,
a super-adiabatic one. The mathematical condition for this state is given by:
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Figure 2.4: Evolution of PMS stars of different masses on HR diagram.

d lnT

d lnP
≥ γ − 1

γ
(2.19)

It has also been shown by Hayashi that during this stage of convective equilibrium, the contraction
of the star continues keeping the surface temperature almost constant. Thus, the luminosity of the
star decreases, and the star descends vertically down the HR diagram. As the star contracts, the
radiative region grows until the convective region is confined to the envelope (in low mass stars) or
is entirely pushed out (in high mass stars).

The contraction of the star continues until nuclear energy generation is sufficient to balance stellar
radiation, and at this point the star settles on the main sequence. As seen from Figure 2.4, high mass
stars achieve radiative equilibrium quickly, and hence have a smaller vertical descent, at which point
they follow the Henyey Track : a period of rapidly rising temperature at nearly constant luminosity.
The region to the right of the Hayashi track is known as the Forbidden Zone, a region where
no star can exist in stable hydrostatic equilibrium. This region is unstable as stars belonging here
have:

d lnT

d lnP
> 0.4

where 0.4 is the threshold for super-adiabatic nature as obtained by putting γ = 5/3 for monoatomic
gas in equation (2.19).

2.5.2 Low Mass Stars

After reaching the main sequence, low mass stars continue burning the hydrogen in the core. After
depleting all the hydrogen in the core (a process which takes a very long time), hydrogen burning
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continues in a shell surrounding the helium core. The shell starts thinning, but the star becomes
brighter and grows in size, while seeing a reduction in surface temperature. Thus, the star ascends
the red-giant branch, moving towards the top-right of the HR diagram. Even along the red-giant
branch, these stars see a significant mass loss, as the outer, weakly held, layers of the star are blown
off by strong radiation forces.

As the star ascends the branch, the core becomes hotter, denser and increasingly degenerate. In
such conditions, conduction of heat by electrons is far more efficient than convection or radiation.
Once the temperature of the core is hot enough to initiate helium burning, a very brief runaway
thermonuclear reaction is achieved, and the core burns up almost all of its helium, at an expo-
nentially increasing fusion rate comparable to that of the entire Milky Way. This is known as the
helium flash, and most of the energy alleviates the core of degeneracy and drives off some of the
outer layers. In very low mass stars (less than 0.5M�) core temperatures are not high enough, and
the degenerate helium core continues contracting, to form a helium white dwarf.

Following the helium flash, normal helium burning continues in the core at a gradual pace. On
the HR Diagram, the star is now a part of the red clump. Once helium in the core is exhausted,
hydrogen and helium burning continues in shells surrounding the inert carbon-oxygen (CO) core.
At this point, the star ascends the asymptotic giant branch. The burning in the two shells do
not occur simultaneously, but alternate with each other, causing thermal pulses. The thermal
pulses drive off significant amounts of stellar mass. What remains is the exposed core, which cools,
becomes degenerate, and turns into a white dwarf, and the ejected envelope surrounding the core,
which is ionised by the white dwarf and is called a planetary nebula.

Figure 2.5: Evolution in size and luminosity of a Sun-like star.

2.5.3 High Mass Stars

Massive stars burn hydrogen in their cores via the CNO cycle, and the steep temperature gradient
makes the core convective instead of radiative. Hence, depletion of nuclear fuel is much faster in

15



Figure 2.6: Evolution of a 1M� star.

SGB: Sub-giant branch
RGB: Red-giant branch
AGB: Asymptotic giant branch
PN: Planetary Nebula

the core of these stars. This causes the star to contract before the shell surrounding the core is hot
enough to fuse hydrogen, resulting in an increase in surface temperature, appearing as a blue hook
on the HR diagram. The core continues its contaction under gravitational pressure, while the outer
envelope rapidly expands, similar to the case in low mass stars.

The point of difference, however, arises from the fact that in high mass stars, helium core degeneracy
does not set in before helium fusion. This, in fact, is in line with the trend that the more massive
the star, the earlier helium burning sets in. This results in the observation of stars situated in
the Hertzsprung Gap that have begun helium ignition before even ascending the red-giant branch.
Hence, helium flashes are not observed in these stars, instead there is regular burning of helium
into carbon via the triple-α process. The triple-α process releases lesser energy per unit mass than
the p-p and CNO cycle, hence, the lifetime of this period is considerably shorter- roughly 10% of
the main sequence lifetime.

4
2He + 4

2He −−→ 8
4Be

8
4Be + 4

2He −−→ 12
6C + 2 γ

Once the helium in the core is exhausted, the core once again begins to contract until it becomes
hot enough for helium burning to commence in a shell surrounding the core, and carbon burning
commences in the core, at which point nuclear burning is now stable again. As with the case of
helium burning, the lighter stars burn carbon in a degenerate core, while the more massive ones
commence carbon burning before degeneracy sets in.
This pattern of fuel exhaustion, core contraction, core ignition and shell ignition continues as the
star continues to fuse higher and higher elements in its core, with each successive burning period
taking lesser time than the previous one. This results in the star developing a layered structure.
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Figure 2.7: “Onion-Skin” internal structure of a 25M� star.

The issue sets in when the star accumulates iron in its core. Iron being the most tightly bound
nucleus, it is not possible for a nuclear reaction with iron to release energy. Hence, at this point,
there is no energy source for the star, and gravitational collapse begins. But unlike previous phases,
there is no subsequent energy source to balance the collapse. Thus, this is the onset of a supernova,
which we shall cover in the next chapter. However, during this collapse, the high temperature
in the core adds neutrons to iron via either the slow or s-process, or the rapid or r-process. This
leads to the nucleosynthesis of higher atomic species as well as neutron-rich isotopes of these species.

Stage Time Scale

Hydrogen 11 My
Helium 2 My
Carbon 2000 y
Neon 0.7 y

Oxygen 2.6 y
Silicon 18 d

Iron core collapse 1 s

Even while being on the main sequence, mass loss is extremely important for high mass stars.
Stars as massive as 60M� can lose up-to a quarter of its mass while on the main sequence. With
increasing mass, radiation pressure becomes more and more important, driving away large portions
of the stars mass from its weakly-held outer layers. One vivid example is that of Eta Carinae, a
massive blue variable star of mass ∼ 100M�, that experiences a mass loss of 10−2M� year−1, via
a bipolar outflow.

Such mass loss results in a special class of stars known as Wolf-Rayet stars. These are stars that
have atmospheres containing very little hydrogen. This is due to the fact that over evolution, so
much mass is lost, that the entire hydrogen burning shell in the outer reaches of the star is ejected.
Thus the star shows a spectrum with emission lines of helium and heavier elements, but lack those
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Figure 2.8: Bipolar outflow from Eta Carinae.

of hydrogen.

Mass loss is extremely important in the case of high mass stars, because of the fact that it is the
final mass of the core of the star which determines whether the star explodes as a supernova, and
the nature of the stellar remnant. It is interesting to notice that high mass stars evolve at roughly
the same luminosity. This is due to the existence of a limit on the luminosity of a star, known as
the Eddington Luminosity. This is the explanation behind high mass stars not having a red-giant
phase, which entails an increase in luminosity.

Figure 2.9: Evolution of stars of different masses.
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Chapter 3

Stellar Death and Novae

In 1932, astronomers Fritz Zwicky and Walter Baade at Caltech were investigating a peculiar type
of object, which was then thought to be a star, that would suddenly flare up in brightness by a fac-
tor of more than 10,000, only to dim back to normalcy within a month. Studying the observational
data of each of these previous superluminous events, Zwicky arrived at the conclusion that this
was produced by the explosion of a massive star. In fact, he went as far as attributing the origin
of cosmic rays to these events (we now know that a significant fraction of cosmic rays originate in
supernovae). Finally, in their 1934 paper, they coined the name “supernovae” for these events.

We now know of supernovae as extremely violent events, mainly associated with core collapse of
massive stars. Huge amounts of energy are liberated at a rapid rate, as the star explodes and ejects
its outer layers at a very high velocity. At its peak, supernovae can even outshine all the stars in
its host galaxy for a brief period.

Figure 3.1: Supernova in NGC 2525. Supernova is to the left in the marked region.
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3.1 Types of Supernovae

Supernovae are broadly classified into two types: Type-I and Type-II, depending on the presence
or absence of the Balmer lines of the hydrogen spectrum (the initial lines of the Balmer series lie
in the visible spectrum). These hydrogen lines are absent in Type-I supernovae, and are present in
Type-II. These types are further subdivided into sub-types depending on the presence or absence
of other spectral lines, and the nature of their light curves. A natural explanation for this basic
difference in spectral lines can be drawn from the fact that Type-I supernovae occur in stars that
have lost their hydrogen envelope, while Type-II supernovae occur in stars that still retain the
hydrogen envelope.

However, there exists a compelling case to study Type-Ia supernovae apart from the others, due
to the peculiar reason that, while the other sub-types occur due to core collapse in massive stars,
Type-Ia supernovae are not attributed to such events.

3.1.1 Core-Collapse Supernovae

Let us now pick off from where we left the evolution of high mass stars in the previous chapter.
The star now consists of various layers of different compositions surrounding an inert iron core. At
this point, the extremely high pressure and temperature at the core mean that the core is degen-
erate, and the degeneracy pressure alone supports the weight of the star. As nickel burning in the
surrounding shell continues to deposit iron on the core, the mass of the core grows.

Once the core reaches 1.4M�, the (electron) degeneracy pressure can no longer support the star,
and the star begins to collapse (the figure of 1.4M� corresponds to the Chandrashekhar Limit,
which we shall visit in the next chapter). During the ensuing collapse, the outer part of the core
can reach velocities up-to about a quarter of the speed of light. Meanwhile, in the core, high energy
gamma rays are produced, which cause photodisintegration of iron atoms into helium nuclei and
neutrons. These helium nuclei too may undergo photodisintegration. This break-up further draws
away energy from the core, hastening the collapse.

56
26Fe + γ −−→ 13 4

2He + 4 n

4
2He + γ −−→ 2 1

1H + 2 n

Under normal circumstances, free neutrons produced spontaneously decay into protons via β-decay:

n −−→ p + e− + ν̄e

However, in the hot, highly dense and relativistic collapsing core, this process is no longer ener-
getically favourable. Instead, the reverse process becomes spontaneous, and the escaping neutrinos
cause an even larger loss of energy from the core:

p + e− −−→ n + νe

These processes lead to an enormous neutrino luminosity, much larger than 1015 L�. Meanwhile,
the core composition becomes increasingly neutron-rich, a process known as neutronisation. As
the core continues to collapse, the neutrons get squeezed tightly together and degeneracy starts set-
ting in the core. But at this point, it is neutron degeneracy pressure which resists the gravitational
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pressure. The core now has densities of the order of atomic densities, and is, in essence, a giant
atomic nucleus. Thus, a neutron star is born. In case the star is much more massive, even the
neutron degeneracy pressure is unable to resist the gravitational pressure, and is overcome, causing
further collapse to form a black hole.

The infalling matter from the outer layers rebound off the now stiff core, and propagate outwards at
a substantial fraction of the speed of light. This is called core bounce. The outflowing gas meets
the infalling gas, forming a violent, dense and extremely hot, yet stalling, shock front. About 1% of
the outflowing neutrinos also gets absorbed by this front, further heating it up and re-invigorating
it. The blast wave blows through the outer layers of the star, and in this process, is responsible for
the formation of most of the naturally occuring heavy elements, through explosive nucleosynthesis.

From the outside, everything appears normal with the star, until the blast wave reaches the star’s
surface. After this, the star becomes a rapidly expanding ball of gas, increasing in luminosity. Over
several weeks, the expanding gas begins to cool, thin and become transparent, causing to luminosity
to drop. What is left behind is a stellar remnant- a corpse, that is either a neutron star or a black
hole, indicating the how massive the progenitor star was at the time of its death.

The slow exponential decline in brightness can be seen by looking at the light curve for the super-
nova. However, there is a characteristic “bump” in the curve, where the decay slows or comes to
a complete halt for a few weeks. This is attributed to the decay of radioactive isotopes of Ni and
Co, which heats up the surrounding matter.

Figure 3.2: General light curve for core-collapse supernovae.

If we were to draw out an energy budget for these supernovae, we would find something very as-
tonishing. The energy budget for a core of mass 1.5M�:

Grav. energy released ∆Egrav = 3× 1046 J

Neutronisation ∆Enuc = 2× 1045 J ∼ 0.067∆Egrav
Envelope ejection ∆Ebind = 5× 1044 J ∼ 0.017∆Egrav
KE of envelope ∆Ekin = 1× 1044 J ∼ 0.003∆Egrav

Radiation ∆Erad = 1× 1044 J ∼ 0.003∆Egrav
Total ∼ 0.09∆Egrav
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We can see that only about ∼ 1% of the gravitational energy released by the dying star is involved
in the explosion. And even after taking into consideration neutronisation, photodisintegration and
envelope ejection, a considerable amount of energy is left unaccounted for. This energy deficit,
is radiated away in the form of neutrinos, formed in the collapsing core. These neutrinos do not
escape immediately, but eventually escape carrying away a bulk of the energy with them.

3.1.2 Type-Ia Supernovae

Type-Ia supernovae do not possess the bump that was characteristic to core collapse supernovae
on their light curves. All properties of these supernovae, point towards a thermonuclear origin-
these supernovae result from the collapse of a white dwarf in binary star systems. These kinds of
supernovae are extremely rare, occurring less frequently than other kinds of supernovae.

Figure 3.3: Light curve for Type-Ia supernovae.

While the light curves of different Type-Ia supernovae peak at different values, on applying a
“stretch factor” correction to them, based on taking into consideration color and magnitude of
the progenitor, the light curves become remarkably homogeneous. This allows us to use Type-Ia
supernovae as standard candles- sources with a known luminosity, using which we can calculate
cosmic distances. Another example of standard candles used by astronomers are a special kind of
star known as Cepheid variable stars. These stars undergo a variation in luminosity over a regular
cycle, the period of which is closely linked with the luminosity.

These supernovae generally occur when a white dwarf accretes matter from its companion star in
the binary system, causing the mass of the white dwarf to approach the Chandrashekhar limit. If it
manages to accrete enough matter to push its mass over the limit, the electron degeneracy pressure
supporting it would give away causing further collapse to a neutron star. However, it is believed
that as the white dwarf comes close to the Chandrashekhar limit, ignition temperature of the carbon
constituting it is achieved, causing a widespread nuclear runaway reaction (due to the degenerate
nature of the dwarf), thereby causing a supernova explosion. Since the mass around which this
explosion takes place is the same, the light curves for Type-Ia supernovae are similar. However,
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the exact conditions of the runaway reaction, as well as the nature of the progenitor (merger of two
white dwarfs or white dwarf accreting matter from neighbour) are still under speculation.

3.2 A Case Study: SN1987A

On 23rd of February 1987, a supernova was detected in the Large Magellanic Cloud, a satellite
galaxy of the Milky Way. At 168,000 light years, this was the closest detected supernova to Earth
since Kepler’s Nova (which was Type-Ia) in 1604. Since it was the first supernova that astronomers
were able to study in great detail, it was one of the most exciting astronomical events of the time.

The first detection of the supernova was actually a neutrino detection, due to the fact that neutrino
emission takes place before visible light is emitted. The Kamiokande-II experiment in Japan and
the IMB experiment in Ohio detected 12 and 8 neutrinos respectively. The two detectors detected
the neutrinos almost simultaneously, in a burst lasting 12 seconds.

About 3 hours after the neutrino detection, the first visible light observations were made, viewed
independently by atleast 4 different observers. Initial observations tentatively established the pro-
genitor star to be Sk-69◦ 202. The obtained light curve is consistent with what is expected of a core
collapse supernova. Furthermore, several satellites detected γ-ray emission lines from 56

27Co, which
was proof that radioactive cobalt was produced in the supernova explosion.

Figure 3.4: Light curve of SN1987A.

Later visual observations indicated that the progenitor star had disappeared, clinching proof for a
supernova explosion. Also observed, was a system of three rings of glowing gas- an inner ring and
two outer rings on either side of the equatorial plane. The formation of these rings is an indicator
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for violent mass loss- fuelling speculations that the supernova may have occurred due to accretion
of matter from a companion star.

Based on the mass of the initial star and neutrino emission data, it is expected that the stellar
remnant is a neutron star. However, intensive searching has not yet yielded an observation of the
remnant. Evidence presented in 2019 suggests that the remnant is enshrouded inside the brightest
clumps of dust. In 2021 measurements of X-Rays emitted suggest that they originated from a
neutron star.

Figure 3.5: Remnant of SN1987A.
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Chapter 4

White Dwarfs

When low mass stars reach the end of their evolution, the stellar remnant they leave behind is
a white dwarf, which are the most common stellar remnant (∼ 97% of evolved stars). These are
extremely dense objects consisting of electron-degenerate matter. Wit no nuclear fuel remaining,
these objects lack an energy source to support themselves against gravity.

The first white dwarf discovered was Sirius B, the dim companion star of Sirius A, both of which
constitute the binary star system of Sirius, the brightest star in the night sky. With a mass of
1.02M� and a volume roughly that of the Earth, it has a mean density ρ ∼ 109 kg m−3. It was
also the source of great controversy in the 1920s, as physicists failed to conceive of a mechanism for
its internal support. A resolution was finally provided in 1926 by R.H. Fowler who suggested that
they are supported by degeneracy pressure, and Chandrashekhar who expanded on his work.

4.1 Degeneracy Pressure

At the high densities which are prevalent in white dwarfs, gas particles are so close to each other
that the interactions between them have to be taken into account. At this point, it is important to
consider Pauli’s Exclusion Principle, which states that two or more identical fermions can not
occupy the same quantum state. In other words, a single quantum state can be occupied by just
two electrons of opposite spin. The volume of each quantum state in phase space is given by h3,
where h is Planck’s Constant.

As the pressure (and density) in the white dwarf increases, electrons become confined to a smaller
phase-space, with electrons of opposite spin occupying the same state. Eventually, all the lower
energy states fill up first upto a particular state.

Let us consider a perfectly degenerate gas of electrons, with all quantum states upto a momentum
pF (called Fermi momentum) occupied. Thus, no higher states with momentum greater than pF
are occupied.

The volume of momentum-space occupied by electrons with momenta in the range p to p + dp
corresponds to the volume of a spherical shell with radius p and thickness dp, given by 4πp2 dp.
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Figure 4.1: Energy states occupied. T = 0 corresponds to a perfectly degenerate gas.

Since the volume of each quantum state is given by h3, and the number of electrons that can occupy
a quantum state is 2, the number of quantum states per unit volume with momenta in range p to
p+ dp is given by

ne(p) dp =


2

h3
4πp2 dp p ≤ pF

0 p ≥ pF
Hence, the total number of electrons per unit volume is obtained by integrating the above expression
over all momenta

ne =

∫ ∞
0

ne(p) dp =
8π

h3

∫ pF

0

p2 dp =
8πpF

3

3h3

Rearranging, we obtain the maximum momentum, otherwise known as Fermi momentum

pF =

(
3h3ne

8π

)1/3

(4.1)

We can now obtain the pressure of the degenerate gas as

P =
1

3

∫ ∞
0

v p ne(p) dp

=
1

3

∫ pF

0

(
p

me

)
p

2

h3
4πp2 dp

where v is velocity of the electrons possessing momentum p. Hence degenerate pressure is given by
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Pdeg =
8π

15meh3
pF

5 =
h2

20me

(
3

π

)2/3

ne
5/3 (4.2)

However, this expression only holds for a non-relativistic scenario. If we were to proceed with a
relativistic treatment, i.e. p� mec, we would arrive at

Pdeg =
hc

8

(
3

π

)1/3

ne
4/3 (4.3)

It is more useful to obtain an equation of state for a white dwarf, by deriving an expression relating
the pressure with its density. For this, we have to first relate the electron density with the density.
For every hydrogen atom of mass mH , there is one electron, and for higher elements, there is one
electron for every 2mH mass. Thus,

ne =
ρX

mH
+
ρ (1−X)

2mH
=
ρ (1 +X)

2mH
(4.4)

where X is the hydrogen fraction. Now, we can express our results in a compact form,

Pdeg = κργ (4.5)

where, in a non-relativistic case,

κ =
h2

20me

(
3

π

)2/3(
1 +X

2mH

)5/3

and γ = 5/3

and in a relativistic case,

κ =
hc

8

(
3

π

)1/3(
1 +X

2mH

)4/3

and γ = 4/3

As we can see, the degeneracy pressure is independent of temperature, and only depends on den-
sity and chemical composition. The condition of degeneracy, however, depends on density and
temperature. It is important to consider degeneracy for “cold” gases, wherein Fermi momentum
is much larger than classical momentum. Note that these “cold” gases can actually have high
temperatures. In stars with degeneracy, there is no sharp transition between regions of degenerate
and non-degenerate gas- the transition is smooth. The solution in the case of partial degeneracy
requires a more complex solution. Similarly, the transition of regions of ideal gas behaviour and
electron degenerate behaviour is smooth.

As the mass of the white dwarf increases, the pressure and the density keep increasing, and the
electron gas becomes more and more relativistic. This would mean that there might exist a limiting
case on the mass of a white dwarf. Hence, it would make sense to probe for such a limit while
considering the electrons in the star to be purely relativistic, i.e. the white dwarf has an equation
of state of form equation (4.5) with γ = 4/3.
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Figure 4.2: Density-Temperature plot showing regions where different equations of state are appli-
cable. Heavy dashed line shows location of Sun.

4.2 Chandrashekhar Limit

From the first two equations of stellar structure, equations (2.3) and (2.5), we can find a second-
order differential equation between pressure p and density ρ by eliminating mass M between these
equations

d

dr

(
r2

ρ

dp

dr

)
+ 4πGρr2 = 0 (4.6)

Now, we know that the equation of state for a white dwarf is given by p = κργ . Such solutions are
known as polytropes, and are usually written in terms of the polytropic index n, given by γ = 1+n−1.
Thus, in a non-relativistic case, γ = 5/3 and n = 3/2, while in a relativistic case, γ = 4/3 and
n = 3. Using a complex change in variables, we can reduce equation (4.6) to a more manageable
form. First, we write distance from centre r = aξ and density ρ = ρcθ

n, where θ is a function of
the dimensionless distance ξ, n is the polytropic index, and ρc is the density at the centre of the
white dwarf. Taking

a =

[
(n+ 1)κρc

(1/n)−1

4πG

]1/2
the differential equation takes that form

1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
+ θn = 0 (4.7)
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Figure 4.3: Solutions of Lane-Emden equation for polytopes n = 3/2 and n = 3. Vertical axis
represents θ and horizontal axis represents ξ.

This is the famous Lane-Emden Equation, a dimensionless form of Poisson’s equation for a New-
tonian, self-gravitating, spherically symmetric fluid. The equation is difficult to solve, and analytic
solutions for θn(ξ) only exist for n = 0, 1 and 5. However, numerical solutions do exist for other
values of n. For all values of n under 5, the density goes to zero at a finite radius ξn, corresponding
to the surface of the star at radius R = aξn.

In order to obtain mass-radius relationship, we integrate the density distribution from r = 0 to R

M =

∫ R

0

4πr2ρ dr = 4πρc

∫ R

0

θnr2 dr

= 4πρca
3

∫ ξn

0

θnξ2 dξ = 4πρc

(
R

ξn

)3 ∫ ξn

0

θnξ2 dξ

(4.8)

However, from equation (4.7), we can see that∫ ξn

0

θnξ2 dξ = −
(
ξ2
dθ

dξ

)
R

Therefore, we get

M = 4πρc

(
R

ξn

)3 [
−ξ2 dθ

dξ

]
R

(4.9)

It is interesting to note that M ∝ ρcR
3. Furthermore, from the definition of a, we can see that

ρc ∝ R2n/(1−n). Putting these together, we arrive at M ∝ R(3−n)/(1−n). For the polytrope n = 3/2
(non-relativistic), we see that M ∝ R−3, i.e. more massive white dwarfs are smaller. Consequently,
for a degenerate, relativistic white dwarf (n = 3), mass is independent of radius.

For the polytrope n = 3, the numerical figures quoted by Kippenhahn and Weigert for the quantity
in square brackets in equation (4.9) is 2.01824 (similarly for n = 3/2 it is 2.71406). So, computing
the mass of a relativistic, degenerate star,
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M = 2.01824× 4πρc

[
κρc
−2/3

πG

]3/2
after using the expression for a. Substituting the value for κ and simplifying the expression,

M = 5.699

(
1 +X

2

)2

M� (4.10)

For a white dwarf, which is predominantly a He or CO core, hydrogen fraction X ≈ 0. Finally, this
gives us

MCh = 1.44M� (4.11)

This is the Chandrashekhar limit, a limit on the mass of a white dwarf capable of supporting
itself by electron degeneracy pressure, and was derived by Subrahmanyan Chandrasekhar in 1930.
It only depends on fundamental constants and is the unique mass a purely relativistic white dwarf
can possess (as real white dwarfs are partially relativistic). The distribution of masses of white
dwarfs, however, is strongly peaked at M ∼ 0.6M�, with the most massive known white dwarf
being 1.35M�.

The implications of Chandrashekhar’s work caused ripples in the world of astrophysics at the time.
In particular, the role of the 4/3 (γ = 4/3) resistance in the relativistic domain. From Figure 4.4 it
is clear that as stellar objects with masses under 1.4M� undergo contraction due to gravity, they
meet the 5/3 resistance solid line at higher circumferences and the 4/3 resistance solid line at lower
circumferences (remember, massive white dwarfs are smaller). If they meet the resistance line, they
settle there and remain stable.

Figure 4.4: Plot showing white dwarf resistance to compression.

However, if the object has mass greater than 1.4M�, it moves parallel to the 4/3 resistance line
and continues contraction. This would mean that even electron degeneracy pressure would be
insufficient to resist collapse, possibly collapsing into a black hole. This hinted towards the existence

30



of black holes, which were already discovered as a solution of Einstein’s field equations, but were an
anathema to most of the world’s astrophysicists, including Arthur Eddington, who also happened
to be Chandrashekhar’s advisor. Such was the gravity of the situation, that Eddington proposed
modifying relativistic mechanics in order to keep the polytrope with n = 5/3 universally applicable.
Eddington’s stature and his opinion over the Chandrahekhar limit, was in large part, responsible
for Chandrashekhar winning the Nobel Prize for his work only about half a century later.

4.3 Fate and White Dwarf Cooling

White dwarfs in a stellar neighbourhood may either accrete matter from a neighbouring star or
merge with another white dwarf, causing a Type-Ia supernova, or they may get consumed them-
selves by an even more massive star. However, in the absence of such scenarios, the fate of a white
dwarf is simple- cooling.

Due to the absence of any internal nuclear reactions, a white dwarf continues cooling, radiating its
internal thermal energy. Conduction of heat by degenerate electrons is so efficient that the interior
of a white dwarf is nearly isothermal, with temperature dropping significantly only at the surround-
ing thin (∼ 1% of radius) non-degenerate layer. The steep temperature across this layer causes it
to be convective, acting as an insulating blanket, slowing down the leakage of energy. Even after
considering an unrealistically efficient cooling mechanism, it takes roughly 109 years for a newly
formed white dwarf of mass 1M� to cool to about 103 K. There exist white dwarfs 12 billion years
old that still have a surface temperature of about 3800 K.

Furthermore, as the white dwarf continues cooling, it gradually crystallises from the centre outwards.
The developing crystal structure minimizes the vibrational energy of electrons. The phase change
that occurs further slows down cooling. The white dwarf thus continues to radiate away its thermal
energy, and since its radius remains constant, it follows a linear path along the HR diagram towards
the bottom-right - the white dwarf cooling track. The white dwarf finally ends its long luminous
life after radiating all its energy, as an invisible black dwarf. However, the universe is still too young
to be able to have formed these objects, due to the slow nature of the cooling track.
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Chapter 5

Neutron Stars

When Zwicky and Baade were struggling with the problem of supernovae (see chapter 3), the
discovery of the neutron had just arrived on the scene. Fascinated by the neutron, Zwicky was
convinced that it was the missing piece to the supernova puzzle. He reasoned that if a star were to
contract upto certain high densities, the stellar core would become a “gas” of neutrons - he called
it a neutron star. The formed neutron star would not only be extremely small, but would be only
a small fraction of the original star’s mass. He believed that this loss in mass was key to providing
the tremendous energy output of a supernova.

While their theory about supernovae was responded to with enthusiasm by the scientific community,
the neutron star theory was termed as “too speculative”, and fizzled out. However the idea finally
caught the eye of scientists when renowned Soviet physicist Lev Landau published a similar paper
on “neutron cores” - this paper was actually a last-ditch attempt by Landau to escape arrests from
the Soviet government. The idea caught the eye of Robert Oppenheimer and his students, who
worked on this problem.

We now know that neutron stars are extremely dense objects, with masses greater than that of the
Sun, but only as large as a city, and their surrounding environment is extremely violent.

5.1 Tolman–Oppenheimer–Volkoff Limit

The base conditions for stability in a neutron star are similar to that in a white dwarf- degeneracy
pressure supporting the star against gravitational contraction. Since both neutrons and electrons
are fermions, it would make sense to approach the problem for limiting mass of a neutron star in
a way similar to Chandrashekhar’s approach for white dwarfs, just replacing terms corresponding
to electrons with those corresponding to neutrons. However, we must also take note of the fact
that the formation of a neutron star involves the process of neutronisation. This can be taken into
account by putting hydrogen fraction X as 1 instead of 0 (however, there is no physical meaning
to hydrogen fraction in this case) in equation (4.10), giving us

Mlimit = 5.699M�
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This, however, is a serious overestimate for the limiting mass of a neutron star. This is because
we have ignored rotational effects, proper implications of general relativity, and most importantly,
the effect of strong nuclear force between neutrons. In 1939, Robert Oppenheimer and George
Volkoff, using the work of Richard Tolman, obtained the limit on the mass of a neutron star sue to
neutron degeneracy alone as 0.7M�, which is lower than the Chandrashekhar limit. This is due to
the fact that they neglected the strong nuclear force, which was not very well understood at the time.

Further theoretical work has placed the limiting mass between 2.2M� and 2.9M� (in general,
≤ 3M�), with the most massive neutron star discovered having a mass more than 2.7M�. The
fact that there is not much clarity on the exact value of the Tolman–Oppenheimer–Volkoff Limit,
which is analogous to the Chandrashekhar limit for white dwarfs, is a testament to how complex the
physics of neutron stars is. However, the undeniable existence of the upper limit was a confirmation
that unless massive stars lose enough matter to settle with a white dwarf or neutron star death,
they will collapse into a black hole.

5.2 Structure

Due the small size of neutron stars which posses a considerable mass, the density in the interior
ρ ∼ 1017–1018 kg m−3, which is of the scale of nuclear densities. To give a physical feel of the
tremendous densities, a teaspoon of neutron star matter would weigh as much as Mt. Everest. In
fact, a neutron star can be thought of as to be a giant atomic nucleus of mass number A ≈ 1057

- it behaves as a macroscopic quantum object. The internal structures of neutron stars are not
well determined because of uncertainties in the equation of state of degenerate nuclear matter, but
recent models have been drawn up based on detailed physics of the interior.

The various zones in the model are:

• The crust is a solid region consisting of matter similar to what is found in crystallized white
dwarfs, heavy nuclei forming a lattice embedded in a degenerate gas of electrons, as well as
heavy nuclei polymers arranged cylindrically due to the strong surface magnetic field.

• A region of superfluid neutrons and degenerate electron gas. The superfluidity observed here
is similar to that observed in 4

3He, wherein the helium atoms, which are fermions, exhibit
superfluidity by pairing up to form Cooper Pairs at high densities or low temperatures. In-
terestingly, the problem of superfluidity was solved by Landau after his release from arrest
that he was trying to avoid by publishing his paper on neutron cores.

• An inner region of superfluid neutrons and superconducting protons- the neutron liquid region.
The superconductivity of the interior regions ensure that the magnetic fields do not diffuse
within it, thereby “freezing” the magnetic field in place. This will have a profound impact as
seen in the next section.

• The innermost core region is believed to consist of exotic matter quite different from neutron
liquid, like a neutron solid or quark matter, due to the extremely high densities. Many neu-
tron star models do not posses this region, but it is a possibility.
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Figure 5.1: Modelled interior structure of a 1.4M� neutron star.

5.3 Rotation and Magnetic Field

As the slowly rotating progenitor star evolves into a neutron star, it undergoes tremendous contrac-
tion. A neutron star of mass about 1M� can have radii of the order 10 km. Applying the law of
conservation of angular momentum here, even after taking into account mass loss, the formed
neutron star spins rapidly. Neutron stars can spin at several hundred times a second, sometimes as
rapidly as 1000 times per second.

As seen earlier, the superconducting nature of the inner regions of the neutron star ensures “flux
freezing” - the same magnetic flux threading the surface of the stellar core of the progenitor.
Therefore, applying conservation of magnetic flux.

Ri
2Bi = Rf

2Bf =⇒ Bf =

(
Ri
Rf

)2

Bi (5.1)

Taking general values of initial radius of the core as 104 km and final radius of neutron star as 10
km, we see that the magnetic field is boosted by a factor of 106. Typical value of initial magnetic
field is ∼ 105 gauss, thereby giving us the final magnetic field as 1011–1012 gauss. The strongest
neutron star fields reach 1015 gauss, but 1012 gauss is more typical. In perspective, the value of the
Earth’s magnetic field is 0.6 gauss.

5.4 Pulsars

The first discovery of a pulsar was in 1967 by Anthony Hewish and Jocelyn Bell. The discovery
though, was by accident. They were observing interplanetary scintillation by small radio sources
using a new radio telescope in Cambridge, when they observed an invisible object in the sky emit-
ting sharp radio pulses. What was even more intriguing was the fact that the pulses were at exactly
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equally space intervals of time, the spacing between the pulses being 1.337 s.

If a rotating body is to remain stable, the centrifugal force at the surface should balance the
gravitational force. Equating the two forces,

mω2r =
GMm

r2
(5.2)

Using the relation ω =
2π

P
and rearranging, we get

r =
3

√
GMP 2

4π2
(5.3)

For an object with period 1.337 seconds, the radius comes out to be smaller than that of a white
dwarf. Hence, the possible origin of these pulses must be a small, compact source- the most viable
candidate being a neutron star.

5.4.1 Rotating Neutron Star Model

An interesting nature of neutron stars is the fact that the axis of the magnetic field is not aligned
to the rotational axis- they lie askew. The sweeping, strong magnetic field acts as a dynamo,
generating large electric fields near the surface. These electric fields generate ionised particles
(electron-positron pairs) from the surface, which radiate away electromagnetically along the mag-
netic field. This results in a beam of energy originating from the magnetic poles, being swung
around as the magnetic axis rotates about the neutron star spin axis - causing the neutron star to
behave like a lighthouse beacon.

Figure 5.2: Magnetised rotating neutron star model of pulsar.
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Observations made over the years have revealed that the period of rotation of pulsars actually
increases over time. This is due to the fact that the electromagnetic energy radiated by the pulsar
comes at the cost of its rotational energy. This rate of loss of rotational energy can be properly
described using the braking index n which is defined by the relation ω̇ = −κωn (following the time
derivative notation). The observation of rate of increase of pulsar periods has been a significant
contribution towards the rotating neutron star theory. Often pulsars are plotted on a P–Ṗ plot,
which can be considered to be an analogue of the HR diagram for pulsars. If we were to calculate
the rate of change of rotational energy for a neutron star,

dErot
dt

=
d

dt

(
1

2
Iω2

)
(5.4)

Using the relation between angular velocity and period, we arrive at

dErot
dt

= −4π2I
Ṗ

P 3
(5.5)

In 1054 AD, Chinese astronomers observed a new “guest star” in the sky, which was brighter
than any other star in the sky, and lasted for a month before fading. Similar observations were
made by other astronomers around the world. The incident that they observed was a core collapse
supernova, and observations place the object that they observed in the now-known Crab Nebula,
which comprises of the ejected material of the progenitor star. At the centre of the nebula is the
Crab pulsar, the supernova remnant. Observation have been carried out on the Crab pulsar and
the observed slowdown is

Ṗ

P
≈ 4.38× 10−13 s−1

Therefore, the energy generated by rotational slowdown of the Crab pulsar comes out to be

dErot
dt

≈ 6.4× 1031 W

Coincidentally, this is also the observed energy radiated by the Crab nebula at all wavelengths. This
was vital proof for the fact that the Crab pulsar is indeed a rotating neutron star, and supports
the theory in general. Unfortunately, the direct observational verification of this theory has only
been successfully applied to the Crab Nebula. However, further theoretical studies have cemented
the theory explaining the origin of pulsars.

Due to their huge moments of inertia, pulse periods of pulsars are extremely stable, even after tak-
ing into account their slowdown, and are as steady as atomic clocks. However, occasionally there
are sudden discontinuous changes in the slowdown of the period. The larger of these discontinuous
changes are termed as glitches. One of the mechanisms though of to produce these glitches are
sudden large scale deformities in the crust of the neutron star, termed as starquakes, similar to
earthquakes on Earth. Modern models take into account the properties of the rotating superfluid
in the neutron star, and the effect of vortices in the fluid on the rotation. While the Crab pulsar
has undergone glitches at an average rate of once every 4 years, the Vela pulsar glitches frequently
at an observed rate of once every 2.5 years.
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5.4.2 Millisecond Pulsars

Millisecond pulsars are pulsars having extremely short periods - of the order of a few milliseconds.
Until the discovery of these pulsars, the Crab Nebula pulsar had the shortest known period, which
was attributed to the fact that it was still relatively young. The fact that millisecond pulsars are
found predominantly in globular clusters of stars provides a natural explanation for it’s short period.

Being in globular clusters provides a greater probability of these objects having a companion star,
i.e. they comprise a binary system. Often when the matter of the companion star comes too close to
the rotating neutron star, otherwise known as crossing the Roche Limit, it starts falling towards
the neutron star and accreting in a rotating accretion disc around it. The rotating disc transfers
angular momentum to the pulsar, thereby speeding it up and allowing for smaller pulse periods.
If the companion star explodes, the system can leave behind an isolated millisecond pulsar. They
have weaker magnetic fields, which allows for extremely stable periods, as well as a higher spin-up
rate due to the accretion disc.

5.4.3 Binary Pulsars

It was largely believed that most pulsars existed as solitary objects, with the handful of binary
systems consisting of a pulsar and a star. However, in 1975, the binary pulsar PSR B1913+16
was discovered. Based on observations, the period of the binary system was determined to be 7.75
hours, which was remarkably short. This led to conclusions that both the component objects of the
binary system were massive, probably neutron stars.

Being a relativistic binary, this was the first accurate determination of neutron star masses, using the
effect of time dilation due to the two gravitating objects on the Doppler shift. The masses of both
neutron stars was determined to be roughly equal to 1.4M�. Furthermore, it was determined that
only one of the neutron stars was a pulsar. The system also provided an environment for extremely
sensitive tests of general relativity. One of the most significant outcomes was the measurement of
orbital decay of the system exactly matched predictions of general relativity. It predicts that the
system’s orbital energy is radiated away in the form of gravitational waves, which can be detected
by gravitational wave observatories such as LIGO.

Figure 5.3: Model of PSR B1913+16 binary system.
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Chapter 6

Black Holes

The concept of a black hole was actually first thought up in 1783, by John Michell. At the time
Newton’s corpuscular or particle theory of light was widely prevalent among the scientific commu-
nity. Having accepted this theory, Michell devised of a scenario where light particles emanating
from the surface of a star are unable to escape the gravitational pull and fall back to the surface,
much like throwing a projectile on Earth with a speed less than the escape speed. Michell noted
that such a “dark star” would not be visible at distances beyond the maximum point of the light
particles’ path, and we would have no information regarding such bodies apart from what could be
inferred from the motion of other luminous objects around it. This theory was further propounded
by French mathematican Pierre-Simon Laplace. However, Michell’s extremely accurate predictions
were so far ahead of it’s time that it made very little impression of the contemporaries of his time,
and the theory faded in obscurity.

While the Schwarzschild solution to Einstein’s field equations which described a black hole existed
since 1916, the idea of a black hole existing in the real Universe was shunned by many scientists.
But this started to change after it was confirmed that implosion of stars with a final mass of more
than 3M� was necessary, and the star could not halt at the white dwarf or neutron star stages. Op-
penheimer and his student Hartland Snyder ran computations for the collapse of an ideal, spherical,
imploding star and the revelations were shocking. The computations suggested that as viewed by
an external static observer, the imploding star would appear to freeze at the critical radius, while
an observer riding the star’s implosion would see the implosion continuing past the critical radius.

The seemingly paradoxical predictions of the Oppenheimer-Snyder calculations were seen as a re-
sult of the idealisation and provoked wide skepticism, however later theoretical insights by David
Finkelstein in 1958 appeared to clear up the situation and the scientific community began to grow
more accepting towards the theory.
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Figure 6.1: A space-time diagram showing Finkelstein’s insight into the Oppenheimer-Snyder col-
lapse. The horizontal plane shows the 2D space cross-sections of the imploding star, and plotted
vertically is increasing time. Worldlines are paths followed by particles on space-time diagrams.
As can be seen, photons A and B emitted prior to the formation of the hole propagate outwards,
photon C emitted at the formation of the hole stays at the horizon, and photon D emitted after
hole formation never escapes.

6.1 Solutions to Einstein’s Field Equations

There exist four key solutions of Einstein’s field equation that describe black holes: Schwarzschild
metric (uncharged, non-rotating), Kerr metric (uncharged, rotating), Reissner-Nordström metric
(charged, non-rotating) and Kerr-Newman metric (charged, rotating), of which we shall briefly
cover the first two key solutions.

6.1.1 Schwarzschild Metric

The Schwarzschild metric is an exact solution to Einstein’s field equations that was derived in 1916
by Karl Schwarzschild. It describes the gravitational field in the vicinity of a spherical black hole
that is non-rotating and uncharged. Let us first approach this from a Newtonian perspective.

The velocity of projection required for a mass to escape that gravitational influence of an object,
otherwise known as escape velocity, is given by,
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ve =

√
2GM

r
(6.1)

The critical radius of a black hole is obtained when this escape velocity becomes equal to the speed
of light, as for smaller radii, even light would be unable to escape the gravitational field. This
critical radius is known as the Schwarzschild radius and is given by,

rs =
2GM

c2
= 2.95

M

M�
km (6.2)

Surprisingly the obtained radius after proceeding through a classical treatment is exactly the same
as what was obtained by Schwarzschild through a relativistic treatment, which follows from

ν∞ = νem

(
1− 2GM

rc2

)1/2

(6.3)

As we can see, any electromagnetic wave emitted from r = rs is redshifted (frequency is shifted
towards red-end of spectrum, i.e. to lower frequencies) to zero frequency, and any wave emitted at
smaller radii no longer “exists”. The surface at this critical radius is termed as the event horizon.
Another important result is the existence of a last stable circular orbit at r = 3rs. Any circular
orbit within this radius will be unstable and the orbiting objects would spiral into the hole. The
binding energy for this last stable orbit is given by[

1−
√

8

9

]
= 0.0572

or 5.72% of the rest-mass energy of that orbit.

At the center of the black hole lies the singularity, a region where density and gravitational field
(or curvature) is infinite according to the solution to general relativity. In the case of Schwarzschild
black holes, the singularity is a point and has zero volume, and can be thought of to contain all
the mass of the black hole which imploded to the point. The appearance of singularities in general
relativity is commonly perceived as signaling the breakdown of the theory, and occurs in situations
where quantum effects should come into play in describing the behaviour of particles. Therefore
there are ongoing attempts to mesh the laws of gravity and quantum mechanics - a law of quantum
gravity, which is expected not to feature any singularities.

6.1.2 Kerr Metric

The Kerr metric was discovered by mathematician Roy Kerr in 1963. At first, it was thought that
it was a special solution that described the gravitational field near a spinning star, but it was soon
realised that it was a general description of the space-time geometry in the vicinity of any spinning
black hole. Rotating black holes, also known as Kerr black holes, possess a number of properties
that make it of utmost relevance in high energy astrophysics, as well as the most challenging, due
to the complexity of the mathematics involved.
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(a) Schwarzschild Black Hole. (b) Kerr Black Hole.

Figure 6.2: Various regions of a non-rotating and rotating hole.

The horizon of a Kerr black hole occurs at a radius of

r+ =
GM

c2
+

[(
GM

c2

)2

−
(
J

Mc

)2
]1/2

(6.4)

where J is the angular momentum of the hole. The horizon in this case has exactly the same
properties as the horizon in the non-rotating case. As we can see from the equation, no black hole
is formed if the system has too much angular momentum. We can see that the maximum angular
momentum J = GM2/c, and the horizon radius of this maximally rotating black hole is half of
that in the Schwarzschild case.

In the case of Kerr black holes, the radii of stable orbits depend on the nature of rotation of or-
biting particles with respect to the hole. In the case of a maximally rotating black hole, the last
stable orbit for co-rotating objects (rotation is in direction of hole’s rotation) is r = r+, while for
counter-rotating objects (rotation is opposite to hole’s rotation) it is r = 9r+. In between these
two radii lies the static limit, within which no object can remain at rest relative to background
stars. The static limit lies at

rstat =
GM

c2
+

[(
GM

c2

)2

−
(
J

Mc

)2

cos2 θ

]1/2
(6.5)

where θ is the polar angle with respect to the axis of rotation. The static limit is due to the fact
that the hole’s rotation drags the space and objects around it in the direction of it’s rotation. The
region between r+ and rstat is termed as the ergosphere and has a number of important properties.
While all objects in this region rotate in the same direction as the black hole, they can escape their
orbits via the Penrose process.
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The Penrose process involves the orbiting object splitting into two smaller objects. The momenta
of the two objects can be arranged such that one object has net negative energy and spirals into the
black hole, allowing the other object to possess greater energy than the original mass had, ejecting
it from the orbit. This energy gain of the ejected object comes from the spin of the black hole,
and works to slow the spin of the hole. Thus, Penrose showed that the rotational energy of a black
hole can be tapped into, and the ergosphere is the region from where the energy is extracted. The
fraction of the rest-mass energy of a rotating black hole which can be obtained is

1− 1√
2

1 +

[
1−

(
J

Jmax

)2
]1/21/4

For a maximally rotating black hole, this corresponds to 29% of the rest-mass energy. Larger
efficiencies are possible if we consider charged rotating black holes (Kerr-Newman holes). The
binding energy of the last stable orbits is given by

[
1− 1√

3

]
= 0.423 for co-rotating orbit,

[
1−

√
25

27

]
= 0.0377 for counter-rotating orbit

or 42.3% of rest-mass energy of the co-rotating orbit and 3.77% of rest-mass energy of the counter-
rotating orbit. The former figure is of great interest because it implies an object spiralling from
the last stable co-rotating orbit will release 42.3% of it’s rest-mass energy. This is the process by
which energy is liberated by friction in accretion discs about black holes and is the probable source
of energy in some of the most extreme astrophysical objects. It is also a far more efficient process
than nuclear fusion processes, which can release only about 1% of the rest-mass energy.

The singularity in this case is ring shaped, but still possesses zero volume, infinite density and
gravitational curvature. The ring singularity lies in the plane of rotation of the hole.

6.2 Properties

Any black hole solution can be completely characterised by just three externally observable classical
parameters:

• Mass

• Electric charge

• Angular momentum

From just these three parameters all the information about the progenitor of the black hole can be
identified. This is commonly called the No-Hair Theorem, meaning the black hole has no “hair”
sticking out of it that can convey any information about the matter inside the black hole, that
is permanently inaccessible to external observers, shrouded by the event horizon. However, there
exists no rigorous proof for this theorem and therefore it is taken as a conjecture.
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An important consequence of the no-hair theorem is the fact that the formed black hole is spherical
and contains no information about the shape of the progenitor star. This means that during the
implosion of deformed stars, the star somehow manages to rid itself of the deformity and form a
spherical hole. The mechanism behind making the hole of the deformed star “hairless” was described
by Price’s theorem which, put simply, stated that “Whatever can be radiated is radiated” - as the
star implodes to beyond the point of the critical radius, the deformity radiates itself away in the
form of gravitational waves. The theorem also explains how the black hole loses the magnetic field
its progenitor once possessed- it is radiated away in the form of electromagnetic energy. Following
from this, the existence of magnetic monopoles or charges would mean that the magnetic charge
would also be one of the observable parameters stated in the no-hair theorem.

6.3 Active Galactic Nuclei

In 1932, Karl Jansky, who was a radio engineer at Bell Telephone Laboratories, was assigned the
task of identifying the source of a background noise prevalent in telephone calls to Europe. After
constructing a special radio antenna, Jansky concluded that most of the noise came from thunder-
storms, but even in the absence of these storms, a faint static remained. By 1935, he had concluded
that most of the static was coming from the central regions of the Milky Way, and were especially
strong when the Milky Way was overhead, but still remained after it had sunk below the horizon.
Most surprisingly, these radio waves from the central regions of the Milky Way outshone the Sun’s
radio wave output, despite being over a billion times farther away than the Sun.

Radio maps of the sky were drawn up over the next few years, and they indicated that apart from
the central regions of the Milky Way, there were two other bright radio sources- Cyg A and Cas A.
Experimental physicists began development of sophisticated radio interferometers, to pinpoint the
location of these radio sources, until it was revealed the Cyg A was a radio galaxy, with radio
emissions coming from two lobes that are over 200,000 light years apart.

In 1960, a radio source named 3C48 was discovered. The region occupied by the source in the
sky was extremely small, and optical observations showed the object to look as if it were a star.
However, the optical spectrum of the object was unlike any of the stars observed from the Earth or
any hot gas encountered by physicists. Over the next two and a half years, more objects showing
similar peculiarities were discovered, with astronomers struggling to understand their nature and
putting forward contorted interpretations.

Figure 6.3: Radio image of Cyg A showing its radio-emitting lobes.
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The mental block was broken by Maarten Schmidt in 1963, when he noticed that the brightest
lines in the spectrum of a similar source 3C273 were the four lines of the Balmer series of the
hydrogen spectra, just redshifted off their usual wavelengths by 16%. Similarly, the spectrum of
3C48 revealed spectral lines of magnesium, oxygen and neon redshifted by 37%, meaning that the
gas emitting these spectral lines was moving away from the Earth at 37% of the speed of light.

The only explanation behind the high speed of these quasi-stellar radio sources or quasars could
be attributed to the expansion of the universe, and the distance of 3C48 from the Earth to have this
high speed would be 4.5 billion light years, following from Hubble’s Law. This implied that these
quasars shine 100 times more brightly than the brightest galaxies of the Universe, while produc-
ing its light in a region of volume 1018 times smaller than the light-producing volume of galaxies.
Furthermore, the energy efficiency in order to produce this large amount of radio waves through
synchroton radiation was unsatisfactorily explained by nuclear conversion or matter-antimatter an-
nihilation.

The idea that black holes in galactic cores may power these radio galaxies and quasars was first put
forward by Edwin Salpeter and Yakov Zeldovich. However the black holes powering these objects
are not ordinary- they are gigantic black holes with masses many million times that of the Sun.
The massive amount of energy generated is through the frictional heating of the accretion disc of
the black hole. The small size of the accretion disc in comparison to the size of the galaxy explained
the small region from where electromagnetic radiation was emanating in the case of quasars, and
the steady nature of the lobes in radio galaxies was explained by the nature of black holes to behave
like a gyroscope and maintain a steady spin axis.

However, a key requisite for the generation of radio waves through synchroton radiation is the
existence of a magnetic field which, by the no-hair theorem, cannot be possessed by a black hole.
But the super-massive black holes at the heart of galaxies do indeed possess magnetic field. The
key here is the fact that the magnetic field is not generated by the black hole, but the spinning
accretion disc around it. The magnetic field, anchored in the disc, rotates along with the black hole
and flings plasma from the disc along the field lines, forming twin magnetised jets. An interesting
variation of this process is known as the Blandford-Znajek process.

In the Blandford-Znajek process, the jets shoot out along the hole’s spin axis, their direction an-
chored by the gyroscopic spin of the hole, and the power of these jets comes from the hole’s enormous
rotational energy. But in this case the hole’s horizon is threaded by magnetic fields, which appears
to be in violation of the no-hair theorem, but this is not the case. The magnetic field, like the
previous case, is generated by the accretion disc, and is confined to region of the black hole by the
disc itself. The field lines cannot be radiated away as they are confined by the hot gas to the region
within the last stable circular orbit (for co-rotating objects).

Even though both quasars and radio galaxies are powered in the same way by a super-massive black
hole, there exists a key difference between the two. The light of a quasar appears to come from
an extremely luminous star-like object, with a size 1 light month or less, while in the case of radio
galaxies, the light comes from a region of a large assemblage of stars, over 100,000 light years in
size. The variation between the two is due to the fact that the central black hole of a quasar is
fueled by the accreting gas at an extremely high rate, and the high frictional heating provides an
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(a) Magnetic field anchored in disc. (b) Blandford-Znajek process.

Figure 6.4: Two methods behind powering the twin jets.

optical output greater than all the stars in the galaxy put together, making it look quasi-stellar, or
star-like. In radio galaxies, the black hole is fed at a quiescent rate. Therefore, what is observed
is not the accretion disc, but the enormous radio-emitting lobes that are shot through the galaxy
and into intergalactic space.

6.4 Black Hole Thermodynamics

In November 1970, Stephen Hawking had figured out an interesting feature of black holes. Using
a concept of absolute and apparent horizons, he showed that in a system of black holes, if you
measure the sum of areas of all absolute horizons, then at a later instant, this sum of areas cannot
have decreased- it can only stay the same, or increased, provided no black hole has “moved” out of
the system. Basically, the areas of absolute horizons is always non-decreasing.

While Hawking noticed a remarkable similarity between his law of areas and the second law of
thermodynamics, which states that the total entropy of the system is non-decreasing, he took it
to be a mere coincidence. To him it was non-intuitive to claim that the surface area of a black
hole is its entropy, due to the seemingly lack of randomness associated with black holes, which are
determined by just three parameters. However, Jacob Bekenstein argued that the black hole area
is, in some sense, its entropy. He was convinced that if black holes possessed no entropy it would
lead to a violation of the second law of thermodynamics, as any entropy associated with an object
would be lost as it fell through a black hole.

Noting these similarities between black hole physics and thermodynamics proved fruitful, as in 1972
Bekenstein, along with other physicists, managed to draw out a set of four laws of black hole
thermodynamics, which are analogous to the laws of thermodynamics.
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• Zeroth Law: The horizon of a stationary black hole has constant surface gravity. This is
analogous the corresponding law of thermodynamics which states that a system in thermal
equilibrium possesses constant temperature.

• First Law: This law relates the change of energy of a stationary black hole with the change
of area, angular momentum and electric charge, akin to the first law of thermodynamics.

• Second Law: The horizon area is a non-decreasing function of time.

dA

dt
≥ 0

• Third Law: It is not possible to form a black hole with zero surface gravity.

From these laws, it was possible to confirm Bekenstein’s conjecture regarding the relation between
black hole area and entropy, and it was obtained as:

SBH =
kB

4lP
2A (6.6)

where kB is Boltzmann constant, and lP is the Planck length, given by

lP =

√
G~
c3

Similarly, it was possible to define a surface temperature for a black hole, given by

T =
~c3

8πGMkB
≈ 10−7

(M/M�)
K (6.7)

The outcomes of these laws, however, led to many, including Hawking, disregarding the Bekenstein
conjecture, as the definition of a surface temperature for a black hole must imply that black holes
must radiate, following from thermodynamics. But that should not be possible, as nothing can
escape to the outer Universe from within the event horizon. While many physicists came up with
explanations regarding mechanisms allowing black holes to radiate, it was Hawking himself who
later gave a concrete explanation behind the mechanism.

In 1973, Hawking met Zeldovich who had proposed a way by which rotating black holes could
radiate. At the heart of his idea were vacuum fluctuations- random generation of virtual matter-
antimatter pairs by borrowing energy from the Universe, and the emission of the borrowed energy
by annihilation of these pairs. From these insights, Hawking devised the mechanism behind Hawk-
ing radiation.

In his mechanism, vacuum fluctuations generate a virtual pair just beyond the horizon itself. One of
the generated particles fall into the hole, while the other manages to escape. The infalling particle
bears negative energy (in order to conserve total energy), causing the black hole to lose mass, while
to an external observer, it would appear that the black hole has emitted or radiated a particle. This
radiation supersedes the second law of black hole thermodynamics.
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Figure 6.5: Physical insight into Hawking Radiation.

An outcome of Hawking radiation is the fact that black holes “evaporate” and have a limited time-
span. However, the process is so slow that it take an extraordinarily large amount of time for a
black hole to fully evaporate. A solar mass black hole would take 1064 years to fully evaporate,
while supermassive black holes can take more than 10100 years. At this end, the Universe would be
a cold, dark place, with all stars having imploded to or consumed by black holes, and white dwarfs
having become cold black dwarfs.
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