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1 Introduction
A traditional setting of a problem in Reinforcement Learning involves interact-
ing with an environment. At every time instant t, the agent takes an action at
based on the current state st, earns a reward r(st, at), and finds themselves in
a new state st+1. The environment is modeled as a Markov Decision Process
(MDP), however, since the nature of the underlying environment is unknown
to the agent, so are the transition probabilities p(st, at, st+1) for moving from a
particular state to the next based on the action taken. The goal of the agent is
to maximize the total reward earnings by controlling the actions taken at each
state.

We can make a slight modification to this problem setup, by having the agent
incur a cost for every action taken. In this case, the agent tries to maximize
the total reward while attempting to limit the total cost expenditure below a
certain system-defined threshold. This corresponds to the environment being
modeled by a Constrained MDP.

This report primarily summarizes the work done in [1], which provides an al-
gorithm for learning in a specific setup of constrained MDPs and proves the
optimality of the regret incurred by the algorithm. Also detailed in the report
are some previous algorithms and results, which are used in obtaining some
results about the aforementioned algorithm.

2 Previous Work

2.1 Ucrl2 Algorithm
The Ucrl2 algorithm, introduced in [2], is described as an algorithm that imple-
ments the notion of “optimism in the face of uncertainty” (OFU). The algorithm
maintains a set of statistically likely true descriptions of the underlying MDP
and makes an optimistic assumption by treating one of these MDP descriptions
as the true nature of the environment. The algorithm then implements a control
policy that is optimal for the chosen MDP description.
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The Ucrl2 algorithm makes use of upper confidence bounds in defining the set
of plausible MDPs. Only those MDPs with rewards and transition probabilities
within a certain bound from the empirical estimates of these values occupy the
set.

The algorithm proceeds as follows. In each episode k beginning at time instant
τk, we initialize the number of visits in the episode nk(s, a) := 0 for all state-
action pairs (s, a) ∈ S ×A. Let Nk(s, a) denote the number of visits before the
episode k. Then, we can obtain the empirical reward estimates and transition
probabilities as

r̂k(s, a) =
1

max{1, Nk(s, a)}
·
τk−1∑
t=1

r(s, a)1st=s, at=a

p̂k(s
′|a, s) = 1

max{1, Nk(s, a)}
·
τk−1∑
t=1

1st=s, at=a, st+1=s′

The set Mk of plausible MDPs are those with transition probabilities p̃(·|s, a)
and rewards r̃(s, a) close to the empirical estimates. That is, they satisfy

|r̃(s, a)− r̂k(s, a)| ≤ ϵk(s, a)

∥p̃(·|s, a)− p̂k(·|a, s)∥1 ≤ ϵ′k(s, a),

where ϵk(s, a) and ϵ′k(s, a) are values specified by parameters. From this set,
we can find an “optimistic” MDP M̃k and a corresponding near-optimal policy
π̃k. This can be done using an algorithm such as extended value iteration (see
Appendix).

We now execute the policy π̃k during the episode, while regularly updating
nk(s, a). The episode ends when we encounter a state for which we perform the
action specified by the policy as many times during the episode as we had done
before the episode, i.e. when ∃s ∈ S such that nk(s, π̃k(s)) = Nk(s, π̃k(s)).

It is important to note why the Ucrl2 algorithm fails in the case if Constrained
MDP problems. Due to the fact that the goal of the policy in Constrained MDPs
is to both maximize rewards while satisfying cost constraints, an algorithm
utilizing OFU need not satisfy the cost constraints posed in the problem. The
authors highlight this fact using a simple example which is depicted in Figure
1.
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Figure 1: Two-state two-action MDP with action 0 in blue and action 1 in red.

Here, different actions are shown in two different colors. Labeling every tran-
sition is the transition probability, reward, and cost respectively. Suppose
the unknown variable a > 0.5, and we have an average cost constraint of
C < 2a/(1 + 2a). Since only state 2 yields rewards, an optimistic policy may
involve taking action 1 at state 1 (since this action transitions to state 2 with
higher probability), and any action at state 2 (since both are identical for this
state). Under this policy, the stationary distribution comes out to be occupy-
ing state 1 with probability 1/(1 + 2a), and occupying state 2 with probability
2a/(1 + 2a). However, this means that our average cost expenditure (which is
the same as the probability of state 2) is 2a/(1 + 2a) > C. Therefore, following
OFU need not satisfy the constraints of the problem.

3 Preliminaries

3.1 Problem Setup and Notation
The problem being considered involves the agent earning a reward and incurring
M costs as a result of the action taken at time instant t. The reward and cost
functions are denoted by r(·|·) and {ci(·|·)}Mi=1 respectively, and are mappings
from S × A → R. Since we wish to impose constraints on our M costs, let cubi
denote the upper bound on the average value of the ith cost expenditure.

Therefore, the Controlled Markov Process can be completely specified by the
tuple CMP = (S,A, p, r, c1, c2, . . . , cM ). In the learning setup, the agent is un-
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aware of the transition probabilities p, but the reward r and cost c are known.

It is important to take note of how the problem takes shape when the transition
probabilities p are known. In that case, a constrained MDP poses the following
optimization problem:

max
π

lim inf
T→∞

1

T

T∑
i=1

r(st, at) (1)

s.t. lim sup
T→∞

T∑
i=1

ci(st, at) ≤ cubi ∀i ∈ [M ]. (2)

Note that we use lim sup and lim inf in case the limit does not exist. This
optimization problem can be solved using the linear program:

max
µ

∑
(s,a)∈S×A

µ(s, a)r(s, a), (3)

s.t.
∑

(s,a)∈S×A

µ(s, a)ci(s, a) ≤ cubi ∀i ∈ [M ], (4)

∑
a∈A

µ(s, a) =
∑

(s′,a)∈S×A

µ(s′, a)p(s′, a, s) ∀s ∈ S, (5)

∑
(s,a)∈S×A

µ(s, a) = 1, µ(s, a) ≥ 0 ∀(s, a) ∈ S ×A. (6)

If µ∗ satisfies the linear program, then the policy SR(µ∗) -which picks action
a at state s with probability µ∗(s, a)/

∑
a′ µ∗(s, a′), and follows fixed rule when

the quantity is undefined - solves the constrained MDP constraints (1)-(2).

3.2 Definitions
Definition 1 (Control Policy). Let the |A|-simplex ∆(A) be defined as

∆(A) :=

x ∈ R|A| :

|A|∑
i=1

xi = 1, xi ≥ 0

 .

Then, a stationary policy π : S → ∆(A) chooses the action at in a state st
according to the distribution p(·|st).

Definition 2 (Unichain MDP). The MDP p is said to be unichain if under any
stationary distribution π the policy-induced Markov chain has a single recurrent
class. If the MDP is unichain, then under any stationary distribution π the
induced Markov chain satisfies

∥P (t)
π,p,s − Pπ,p∥V ≤ Cρt ∀s ∈ S,
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with C > 0, ρ ∈ [0, 1] being constants and the norm being the total variational
distance (maximum difference between probabilities that two distributions as-
sign to the same event). Here, P (t)

π,p,s is the t-step probability distribution ob-
tained by following policy π in the MDP p with initial state s, and Pπ,p is the
stationary distribution under the policy π.

Definition 3 (Occupation Measure). For a controlled Markov process under
policy π the occupation measure µπ = {µπ(s, a) : (s, a) ∈ S × A} describes the
average amount of time each state-action pair occurs during the evolution of
the process. More formally,

µπ(s, a) := lim
T→∞

1

T
Eπ

[
T∑

t=1

1{st = a, at = a}

]
.

Definition 4 (Regret). The performance of the learning algorithm is defined
by the reward and cost regrets. If r∗ is the optimal average reward for the
constrained MDP (1)-(2), the cumulative reward and cost regrets until time T
are

∆(R)(T ) := r∗T −
T∑

t=1

r(st, at),

∆(i)(T ) :=

T∑
t=1

ci(st, at)− cubi T.

Definition 5 (Diameter). The diameter D(p) of an MDP p is the time it takes
to move from a state s to another state s′ by following an appropriate policy.
Alternatively, it is defined as

D(p) := max
s,s′

min
π
Eπ,pTs,s′ .

The diameter of an MDP p with state space S and action space A satisfied
D(p) ≥ log|A| |S|. In fact, in [2], it is shown that the regret incurred by the
Ucrl2 algorithm is dependent on the diameter of the MDP as Õ(D|S|

√
|A|T ).

This is due to the fact that the analysis in [2] considers communicating MDPs,
i.e. those with a finite diameter D.

4 Ucrl-cmdp Algorithm
We have seen how the Ucrl2 algorithm, which implements OFU, fails to learn
an optimal policy in the constrained MDP case. Now, we can describe the
Ucrl-cmdp algorithm, which is based on the Ucrl2 algorithm, but has minor
differences to make it compatible with the extra cost constraints being imposed.

Maintaining p̂k(s, a, s
′) as the empirical estimate upto episode k for the tran-

sition probability, which is set to uniform distribution if the state-action pair
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has never been visited prior to the kth episode, i.e. when Nk(s, a) = 0. Much
like the Ucrl2 algorithm, we maintain a “confidence interval” associated with
this estimate p̂t, which is the set of plausible MDPs with transition probabilities
close to the empirical estimate. More formally, the confidence interval is defined
as:

Ck := {p′ :
∑
s′∈S

p′(s, a, s′) = 1, p′(s, a, s′) ≥ 0,

|p′(s, a, s′)− p̂k(s, a, s
′)| ≤ ϵk(s, a), ∀(s, a) ∈ S ×A},

where the interval size is explicitly defined using an agent specified constant
b > 1 as

ϵk(s, a) :=

√
2 log(T b|S||A|)
min(Nk(s, a), 1)

.

After initializing the required counts and obtaining the confidence interval at
the beginning of episode k at time t = τk, the agent solves the following con-
strained optimization problem described by Equations (3)-(6), with the added
maximization over MDPs p′ satisfying p′ ∈ Cτk .

Maximizing with respect to p′ expresses the optimism of the agent, on top of
choosing the optimal policy which is conveyed through the maximization over
µ. In case the problem is feasible and has a solution given by (µ̃k, p̃k), then
the algorithm chooses actions within the kth episode according to SR(µ̃k). If
not, then the algorithm executes a pre-determined policy for the duration of the
episode.

4.1 Analysis of Ucrl-cmdp
Finding bounds on the cumulative reward and cost regrets is crucial for ana-
lyzing the performance of a learning algorithm. While it is expected that the
regrets scale up with time, we would prefer a sub-linear growth in the regret to
ensure better scalability of the algorithm.

For the analysis of the algorithm, we shall assume that the underlying MDP p is
unichain, and the rewards, costs, and upper bounds on costs all lie in the range
[0, 1]. Furthermore, we shall assume that the constrained MDP optimization
problem posed in (1)-(2) is feasible.

Theorem 1. For the Ucrl-cmdp algorithm applied to an MDP satisfying the
above assumption, the cumulative reward regret ∆(R)(T ) and cumulative cost
regrets ∆(i)(T ) ∀i ∈ [M ] are bounded by Õ(T 2/3).

Clearly it is evident that the Ucrl-cmdp algorithm achieves sub-linear regret.
It does not, however, perform better than the Ucrl2 algorithm, which can be
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shown to have regret bounds of Õ(
√
T ). The difference arises from the fact that

we are required to solve a multi-objective optimization problem.

We can go about showing the exact bounds on the performance of Ucrl-cmdp
by analyzing the behavior on a “good set” and bounding the number of times a
sub-optimal policy is followed for an episode. For the following results, we take
δ = T−1/3 and α = 1/3.

Lemma 1. Let G1 be the event that the MDP p lies in the optimistic set for
each episode, i.e,

G1 := {p ∈ Cτk , ∀k ∈ [M ]}.

Then,

P{G1} ≥ 1− 1

Tα+b−2

Lemma 2. Define the event G2 as

G2 :=

{
K∑

k=1

nk(s, a)−E(nk(s, a)|Fτk)√
Nk(s, a)

≤ T β

√
log

(
|S||A|T

δ

)
∀(s, a) ∈ S ×A

}
,

where K is the total number of episodes, Fτk is the history of the MDP up to
the episode, and β satisfies 2β − α = 1. Then, P{G2} ≥ 1− δ

T .

Lemma 2 follows by noting that each of the terms in the summation is a mar-
tingale difference term. Therefore, we can lower bound the probability of the
converse event for a particular state action pair using Azuma-Hoeffding inequal-
ity [3], and taking union bound over all state-action pairs.

Lemma 3. For all states s such that Pπk,p(s) > 0,

E(nk(s, a)|Fτk) ≥
⌊
⌈Tα⌉
2TM

⌋
× πk(a|s)

2
,

where TM denotes the “mixing time”, the maximum expected time it would take
to hit one state by starting in another state. ⌈Tα⌉ denotes the duration of an
episode.

The above Lemma follows by using Markov Inequality to lower bound the prob-
ability of hitting a state s in 2TM steps by 1/2. This is then multiplied by the
probability of taking the action a in state s (πk(a|s)), and the number of such
durations of 2TM in the episode of duration ⌈Tα⌉.

The Ucrl-cmdp algorithm can be thought of as implementing an “index policy”
that assigns an index to each stationary policy as follows,

Ik(π) := max
p′∈Cτk

{
r(π, p′) : ci(π, p

′) ≤ cubi
}

For any policy not satisfying the cost constraints, the associated index is −∞.
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Lemma 4. For p′ ∈ Cτk on the “good set” G = G1 ∩ G2,

|r(π, p)− r(π, p′)|, |ci(π, p)− ci(π, p
′)| ≤ 2max

s

∑
a∈A

πk(a|s)ϵτk(s, a) := δk(π).

The Lemma follows from the definition of the confidence interval Cτk , and using
the triangle inequality on the distance between distributions of p̂τk and p, and
p̂τk and p′. This can also be observed from the factor of 2 on the RHS of the
inequality.

Using Lemma 4, we can make a comment on the nature of policies played dur-
ing the episode k. Consider the threshold δk(πk). If ci(πk, p) > cubi + δk(πk),
put together with ci(πk, p) ≤ ci(πk, p

′)δk(πk) from Lemma 4, we have that
ci(πk, p

′) > cubi , i.e. associated index for all p′ is −∞.

Furthermore, if |r(πk, p)−r(πk, p
′)| ≤ δk(πk), then by the definition of the index

Ik(πk), it is upper bounded by r(πk, p) + δk(πk). However, since this bound is
greater than r(πk, p), which in itself lies in the set of indices (for feasible MDPs
p), we have that the index of a policy is lower bounded by r(πk, p).

Lemma 5. On the “good set” G, the instantaneous (single step) cost and reward
regret can be bounded by δk(πk).

Proof. Consider a stationary policy π being played. For the cost regrets, if
ci(π, p) > cubi + δk(π), then Ik(π) = −∞. However, we know the existence of a
feasible policy π̃ whose index is greater than r(π̃, p), which is greater than −∞.
Therefore, for π to be played, we must have the instantaneous cost regret being
upper bounded by δk(π).

Now, we move on to the reward regrets. The index of an optimal policy must
always be greater than or equal to the optimal average reward r∗. However, we
also have shown an upper bound on the index of the policy being played, i.e.
the policy with the highest index. Therefore, r(π, p) + δk(π) > r∗, meaning the
instantaneous regret is upper bounded by δk(π).

With the above results on hand, we can provide a sketch proof of Theorem
1. Lemma 1 and Lemma 2 guarantee that the “good set” occurs with high
probability, and it suffices to analyze the regrets incurred by the algorithm on
this set. From Lemma 5, we know that the instantaneous regrets are bounded
by δk(πk). Therefore, the total regret is bounded by this quantity multiplied
by the length of the episode. By bounding these quantities appropriately, we
obtain that the reward and cost regrets are Õ(T β). However, from the condition
on β from Lemma 2, we have that β = 2/3, giving us regret of order Õ(T 2/3).
The exact details of bounding the regret are fleshed out in [1].

4.2 Achievable Regret Vectors
Considering the technicality of the analysis on regret in order to evaluate the
performance of the algorithm, a natural question that arises is that of the use
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of Lagrange multipliers. Given that we are required to solve the multi-objective
optimization problem in (1), we could have used Lagrange multipliers to scalar-
ize the problem. However, in that case, our derived bounds would be in terms
of the multipliers {λi}Mi=1. This would require us to further derive bounds on
the multipliers, which is not a very straightforward task.

The real advantage of using Lagrange multipliers is evident in the attempt to
characterize the set of achievable regret vectors. Consider a Lagrangian form of
the constraints (1)-(2),

L(λ;π) := lim inf
T→∞

Eπ

∑T
t=1 r(st, at) + λ · (cub − c(st, at))

T
,

where boldface quantities represent vectors. The dual function for this expres-
sion is D(λ) := maxπ L(λ;π) with the dual problem being

min
λ≥0

D(λ).

Note that it has been shown that λ∗ solving the dual problem satisfies D(λ∗) =
r∗.

Theorem 2. There exists an underlying MDP p for which the reward and cost
regrets under any policy π satisfy

Eπ∆
(R)(T ) +

M∑
i=1

λ∗
iEπ∆

(i)(T ) ≥ 0.015
√

D(p)|S||A|T .

Proof. Consider a regular MDP (without cost constraints) having reward func-
tion r(st, at) + λ · (cub − c(st, at)). Then, the optimal average reward for this
MDP is r∗(λ). From results on communicating MDPs in [2], we can choose
the nature of the underlying MDP p such that r∗(λ)T −Eπ

∑T
t=1 r(st, at) +λ ·

(cub − c(st, at)) ≥ 0.015
√
D(p)|S||A|T . Adding and subtracting r∗T on both

sides and rearranging the terms, we obtain

Eπ∆
(R)(T ) +

M∑
i=1

λ∗
iEπ∆

(i)(T ) ≥ 0.015
√
D(p)|S||A|T + r∗T − r ∗ (λ)T.

However, from the fact that λ∗ satisfies r∗(λ) = D(λ∗) = r∗ due to the defini-
tion of the reward function, we obtain the expression in the Theorem.

5 Algorithm Performance
Consider an experimental setup of a single-hop wireless network consisting of
a node transmitting data packets over an unreliable channel. The transmitting
node has control over the transmission power, which is treated as the action
at. The probability that the transmission successfully goes through is higher
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when the transmission occurs at higher power levels. A suitable cost metric for
this setup is the queue length at the transmitter. denoted by Qt, which evolves
as Qt+1 = min{(Qt + At − Dt)

+, B}, where At and Dt denotes arrivals and
departures respectively, and B is the buffer size.

An optimal algorithm would prefer to minimize power consumption, or in terms
of reward, maximize (E

∑
−at) /T while ensuring that average queue length lies

below a threshold (E
∑

Qt) /T ≤ cub.

The paper considers the comparison of the performance of Ucrl-cmdp with
a standard Actor-Critic algorithm in this setup. The Actor-Critic algorithm
yields a high cost regret when simulated with specific parameter values. While
the reward regret of the Ucrl-cmdp algorithm is higher than that of the Actor-
Critic algorithm, it also yields much lower cost regrets. The algorithm is thus
effective in balancing both kinds of regrets, at the cost of marginally sub-optimal
reward regrets. This earns the algorithm its name — “balanced optimism in the
face of uncertainty”, or BOFU.

6 Appendix

6.1 Extended Value Iteration
While value iteration plays a policy for a given MDP, in the Ucrl2 (as well as
Ucrl-cmdp algorithm, we are also required to choose an optimistic MDP from
the set of plausible MDPs. This can be achieved using an algorithm known as
extended value iteration.

The algorithm performs the following iteration on the value function Vi(·) and
normalized value function V ′

i (·) for all s ∈ S:

V0(s) = 0,

Vi(s) = max
a∈A

{
r̃k(s, a) + max

p∈Mk

{∑
s′∈S

p(s′)Vi(s
′)

}}
.

The termination condition for the algorithm is when the change in state value
function is nearly uniform and close to the average reward.

The external maximization provides us with the optimal policy, while the in-
ternal maximization chooses the optimistic MDP from the plausible set. Since
the internal maximization is over a convex polytope, we are guaranteed that the
algorithm converges in a finite number of iterations.
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